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Stochastic finite element approaches using derivative information for uncertainty

quantification
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In this work we describe a stochastic finite-element-based approach for analyzing the performance
of a complex system that is described by a mathematical model depending on several stochastic
parameters.

We construct a surrogate model as a goal-oriented projection onto an incomplete space of polyno-
mials; find coordinates of the projection by collocation; and use derivative information to significantly
reduce the number of the required collocation sample points. The simplified model can be used as a
control variate to significantly reduce the sample variance of the estimate of the goal.

For our test model, we take a steady-state description of heat distribution in the core of the nuclear
reactor core, and as our goal we take the maximum centerline temperature in a fuel pin. For this case,
the resulting surrogate model is substantially more computationally efficient than random sampling
or approaches that do not use derivative information, and it has greater precision than linear models.
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I. INTRODUCTION

The quantitative characterization and reduction of un-
certainties in large models is an important area of re-
search, related to statistical analysis of random phenom-
ena and to physical study of complex systems. One of its
most general tasks is to describe the influence of random
inputs on an arbitrary but given output. Any improve-
ment to the existing tools of uncertainty quantification
will have both mathematical and industrial benefits.

This is particularly true in the area of nuclear reactor
design and control, where greater engineering precision
results in significant preservation of resources. The usual
difficulties in modeling the work of the nuclear reactor
include the large size of the associated systems of equa-
tions, the nonlinearity, and the implicit dependence of
equations on parameters. As a result, one can afford
to run the computational model of a nuclear reactor only
for a small number of scenarios involving the values of its
physical parameters. In addition, although the informa-
tion on the behavior of parameters is available in formats
convenient for experimental physics and engineering pur-
poses, such formats are not necessarily appropriate for
uncertainty analysis.

As a test case for our method, we consider a math-
ematical model of heat transport in the nuclear reactor
core. We create a computationally efficient method to de-
scribe the dependence of a merit function, the maximum
centerline temperature, on the model uncertainties.
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A. Problem Definition

We first present our mathematical problem in the most
general form. Consider an arbitrary system of (dis-
cretized, algebraic-differential) equations with main vari-
ables T = (T1, T2, .., Tn) and intermediate parameters

R̂ = (R1, R2, ..., RN ):

F (T, R̂) = 0 (I.1)

Here and in the sequel, we denote by R a generic inter-
mediate parameter, one of R1, R2, . . . , RN , and by R̂ the
vector of all such parameters.

The parameter set R̂ is not independent. It is related
to the variables by a set of expressions

R = R(T ) + ∆R(T ; α) (I.2)

with the experimental error ∆R(T ; α), which is also de-
pendent on temperature and on a set of parameters α
that quantifies the uncertainty. The parameters α be-
come the primary uncertainty parameters. Then the
structural equation of the nonlinear system (I.1) becomes

F (T, R̂(T ; α)) = 0 (I.3)

Strictly speaking, equation (I.3) now results in the pri-

mary variable T being a function of (α) and not of R̂
(which is itself a function of temperature). To abide by
the physical meaning of the respective parameters R, we
may still write T = T (R̂).

For a given merit function

J = J (T ) : Rn → R (I.4)

we need to find the influence of uncertainties in the pa-
rameters on the uncertainty of the output. To find the
effects of the uncertainty on the merit function J ,

∆J = J (T (R)) − J (T (R + ∆R)) (I.5)
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we express an output as a function of uncertainties of the
inputs, represented by the parameters α:

J ≈ Ĵ = Ĵ (T (R(T ) + ∆R(T ; α))) = Ĵ (α) (I.6)

This representation, or surrogate model, is created
by using a stochastic finite-element approximation [12,
13, 25]. That is, we create a set of polynomials in α,

{Ψq(α)}
q∈Q

, and we define Ĵ (α) =
∑

q∈Q xqΨq(α). The

coefficients xq are obtained by requiring that the func-

tion and derivative values of the surrogate model Ĵ (α)
match the ones of the real model J (α), in a least-squares
sense.

The main motivation for our approach is the observa-
tion that, for most computational multiphysics applica-
tions, there exist methods for computing the full gradient
of a merit function J that require an effort comparable
to or even smaller than the effort of computing J itself.
We have in mind primarily the adjoint sensitivity method
[5] and reverse automatic differentiation approach [14].
Therefore, as the number of parameters increases, using
J derivative information is appealing because it provides
more information than does the evaluation of J by a fac-
tor equal to the number of parameters, while having a
similar overall comparable cost. We thus expect to have
to compute the solution of (I.3) far fewer times.

B. Comparison with Previous Approaches

Among the most commonly encountered approaches
for uncertainty quantification in engineering systems are
Monte Carlo methods [8] and first-order sensitivity ap-
proaches [5]. The first approach is flexible, but slow,
whereas the second approach is reasonably efficient, but
inexact. Our approach is a hybrid between a sampling
approach and a first-order sensitivity approach. We thus
expect it to inherit the flexibility of the first and the ef-
ficiency of the second. Such methods have been recently
succesfully used with some environmental and scientific
applications [17, 19], but our work includes some key dif-
ferences, as we explain below.

The only other method, that we are aware of, for un-
certainty quantification of engineering systems that is a
hybrid between a probabilistic-type method and a sensi-
tivity approach is based on Gaussian processes [24]. The
difficulty with that approach is that one needs a good
Gaussian process prior description of the uncertainty.
Such priors have been produced in the case of essen-
tially stationary spatial uncertainty in low dimensions,
but they have not been generated for arbitrary nonlin-
ear maps like the ones described here. For such random
variables, any form of approximate stationarity is highly
unlikely to hold.

Key parts of our method are related to polynomial
approximations of complex systems with uncertain pa-
rameters, stochastic finite element methods (SFEM)
[1, 2, 12, 13, 25]. A method that has recently atracted

major interest is the one of SFEM-Galerkin methods
[1, 13]. Such methods, however, must approximate the
state variables before they can approximate a merit func-
tion. That would require substantially more storage com-
pared to our method, as well as a specialized solver for the
resulting nonlinear problem. SFEM collocation methods
[3, 4, 27] are nonintrusive and do not need specialized
solvers, but they still use a state variable approxima-
tion, with the same memory requirements for represen-
tation as SFEM-Galerkin. Surface response approxima-
tion [6, 17, 19, 23] use only sampled information about a
merit function to construct the response surface, though
rarely using derivative information as well, as we do here,
[17, 19].

Hermite interpolation approaches, to which our work is
also related, have rarely been used for spaces of dimension
comparable to the one described here (12 dimensions)
[21]. Some reasons for this are described in Section II C.

Nonetheless, we have yet to develop theory for the sta-
bility for this approach. We therefore describe a con-
trol variate approach [20] where our SFEM/derivative
approximation method can be used as an accelerator for
a sampling approach that depends on efficiency but not
on corectness on the quality of our approximation.

Our method shares with the references [17, 19] the fea-
ture that it is a hybrid between sampling methods and
sensitivity methods. Nonetheless, our method is applied
to a very different application, thermo-hydraulic behav-
ior of sodium-cooled nuclear reactor [7]. A representation
of the uncertainty that would be usable in our context is
not provided in prior work [10, 11]; in Section III C we
derive one that is consistent with all available informa-
tion. The mechanism for reducing the size of the basis to
make the representation tractable is quite different from
[19] (reference [17] uses a full basis of a given degree).
In addition, in [19] a linear model turned out to be suf-
ficient, which is not the case here, as we demonstrate in
Section IV. Moreover, the issue of eliminating the bias in
the polynomial approximation was not proposed in any
of these references; we describe a method to do so by
using a control variate.

The rest of the paper is organized as follows: In Sec-
tion II, we describe a stochastic finite-element collocation
procedure with derivative information. In Section III, we
introduce a simplified model of the nuclear reactor core,
describe its uncertainties, and obtain the derivative infor-
mation. In Section IV, we present the numerical results.
In Section V, we summarize the study and discuss re-
search plans.

II. STOCHASTIC FINITE-ELEMENT METHOD

WITH INCOMPLETE BASIS

Choose a set Ψ of multivariable orthogonal polynomi-
als of the parameter set S = {si}. A subset {Ψq} is used
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to approximate the merit function:

J ≈
⌢

J =
∑

q

xqΨq (II.1)

Ψq = pq
0 +

∑

i

pq
i si +

∑

i,j

pq
ijsisj +

∑

i,j,k

pq
ijksisjsk + ...

(II.2)
The coefficients {pq} = {pq

i, p
q
ij , p

q
ijk,, ...} are chosen so

that {Ψq} satisfy the orthogonality condition in some
probability measure π:

∫
ΨqΨwdπ = 0, w 6= q (II.3)

The basis Ψq is the stochastic finite-element basis, and

the approximation Ĵ =
∑

xqΨq is called the SFEM ap-
proximation. The term stochastic refers to the fact that,
if the variables s are random, then the random variable
approximation (II.1) can be used approximate the statis-
tical properties of J [13]. Our paper is concerned mainly

with the procedure by which the approximation Ĵ is con-
structed. This approximation procedure is deterministic
in nature.

This problem of basis (or polynomial chaos) construc-
tion has standard solutions [12, 25]. For the Gaussian
measure π = exp(− 1

2 |S|
2), the formal definition of the

basis functions reads as follows:

Ψq(s1, s2, s3, ...) =
∂(..)

∂s1∂s2∂s3∂..
exp(−

1

2
|S|2) (II.4)

which can be shown to be equivalent to a family of Her-
mite polynomials. We will refer to the Hermite polyno-
mial basis in the following form:

Ψ(s1, s2, s3, ...) = H(s1)H(s2)H(s3)... =
∏
j

H(kj)(sj)

H(0)(s) = 1
H(1)(s) = 2s
H(2)(s) = 4s2 − 2
H(3)(s) = 8s3 − 12s
H(4)(s) = 16s4 − 48s2 + 12
...

(II.5)
Collocation is the most convenient way to determine the
coefficients x = (x1, x2, ...xq, ..)

T for the expression (II.1)
[3, 27]. In this context, collocation is identical to the sur-
face response approach [17]. The collocation conditions
are enforced at the nodes {Si}, i = 1, 2, . . . , m, resulting
in a system of linear equations





Ψ(S1)
Ψ(S2)
...
Ψ(Sm)




x =





J (S1)
J (S2)

...
J (Sm)




(II.6)

where {Si}, Si = (s1i, s2i, ..., sNi) is a sample of points
from the collocation parameter space and {J (Si)} is the

set of the corresponding exact values of the output. The
rows of the collocation matrix are defined by

Ψ(Si) = (Ψ1(Si), Ψ2(Si), ...) (II.7)

It is also possible to obtain x by using orthogonality of
the basis functions, by Galerkin [1, 2, 13]. This approach
would involve creating a weak form of (I.3) and solving
it coupled with (II.1). That approach is more robust
for surfaces with a relatively low degree of smoothness,
but it is harder to implement because it requires a major
intrusion in the application code and the development of
different nonlinear equations solvers. Therefore, in this
work we address only collocation approaches.

A. Ranking the Parameters and Selecting the

Polynomial Degrees

The nonlinear dependence of the output on the param-
eters implies the use of high-degree polynomials. This
could result in a large number of polynomials in basis
even for a moderate number of variables. For exam-
ple, we need 66 polynomials for a basis on 10 parameters
and maximal degree 2, 286 polynomials for degree 3, and
10,286 polynomials for degree 4. For 15 parameters and
degree 4, we already need 51,441 polynomials.

For computational efficiency, we use a small number of
variables. When physically justified, various uncertainty
effects should be lumped together and attributed to a
small list of independent random inputs [6]. Moreover,
we use a smaller basis, which includes high-order poly-
nomials only in some variables (or, more generally, only
in some “important” directions in the parameter space).
This basis can even be constructed adaptively, as long as
the adaptive procedure does not require too many addi-
tional evaluations of J (S).

In the presense of information on statistical distribu-
tion of uncertain parameters, it is possible to explicitly
estimate their influence on the distribution of the out-
put. For an illustration, assume normal, zero-mean dis-
tribution with diagonal covariance matrix Σ = (σij):
S ∼ N [0, Σ]. Create the linear approximation of the
output function around S = (0, 0, ..):

J (S) ≈ Ψ0(0) +
∑

i

Ψ′
i(0)si +

1

2

∑

i,j

Ψ′′
ij(0)sisj (II.8)

Let’s compute the variance:

var(J ) = E(J (S)2) − E(J (S))2 (II.9)

From the definition of variance σ2
ii, and by zero-mean

assumption

E(s2
i ) = σ2

i , (II.10)

Then, the variance of J can be approximated by

var[J (S)] =
∑

i

Ψ′
i(0)2σ2

i . (II.11)
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A simple (first-order) test may look as follows. If we
observe

∣∣∣∣
∂J

∂si

σ2
i

∣∣∣∣ >

∣∣∣∣
∂J

∂sj

σ2
j

∣∣∣∣ (II.12)

at the neutral setup of the system, S = (0, 0..), we con-
clude that the parameter si is relatively more important
for correct representation of uncertainty of the output. In
the construction of the basis, we will use a higher degree
in si than in sj .

In the case where the statistical information is difficult
to determine or manipulate, the importance test (II.12)
may be reduced to

∣∣∣∣
∂J

∂si

∣∣∣∣ >

∣∣∣∣
∂J

∂sj

∣∣∣∣ (II.13)

We point out that our approximation Ĵ will ultimately
be validated by a control variate. Therefore the approxi-

mation Ĵ does not need to be of a prescribed quality for
correctness of the method. Hence, we will use (II.13) for
our ranking, since it is easier to implement.

In our numerical experiments, we assume an existence
of a modest computational budget limiting the number
of direct evaluations of J (S). We start with a full basis
of degree 3 and use (II.13) to put the variables, depend-
ing on their importance, into groups I, II, and III of sizes
nI , nII , nIII . We allow the polynomials in the variables
from group III to have maximal degree 3, and only keep
the polynomials of degree 1 in the variables from group
I. This (arbitrary) procedure appears to be sufficient to
decide on the practicality of the polynomial basis trun-
cation. We take nI > nII >> nIII .

The sizes of the groups, their numbers, and values of
maximal degrees may be adjusted to suit the modeling
needs as well as the computational resource limits.

B. Using Derivative Information to Compute the

Collocation

We compute derivatives of the output function and add
derivative information to the collocation matrix. Then a
single right-side entry J (Si), will generate a subcolumn

of entries, (∂J (Si)
∂sj

), providing right-side information for

several rows at once.

The computational time saved by using fewer sample
points may be partially spent on oversampling, or sensi-
tivity analysis, to improve the performance of the model.

Matching the values of the derivatives with the corre-
sponding polynomial derivatives on the right, we build

FIG. II.1: SFEM with derivative information: a typical col-
location matrix sparsity pattern (transposed)

an extended system of collocation equations:




Ψ1(S1) Ψ2(S1) · · · Ψk(S1)
...

...
...

...
Ψ1(Sm) Ψ2(Sm) · · · Ψk(Sm)
∂Ψ1(S1)

∂s1

∂Ψ2(S1)
∂s1

· · · ∂Ψk(S1)
∂s1

∂Ψ1(S1)
∂s2

∂Ψ2(S1)
∂s2

· · · ∂Ψk(S1)
∂s2

...
...

...
...

∂Ψ1(S1)
∂sn

∂Ψ2(S1)
∂sn

· · · ∂Ψk(S1)
∂sn

...
...

...
...

∂Ψ1(S2)
∂s1

∂Ψ2(S2)
∂s1

· · · ∂Ψk(S2)
∂s1

...
...

...
...

∂Ψ1(Sm)
∂sn

∂Ψ2(Sm)
∂sn

· · · ∂Ψk(Sm)
∂sn





X =





J (S1)
...

J (Sm)
∂J (S1)

∂s1
∂J (S1)

∂s2

...
∂J (S1)

∂sn
∂J (S2)

∂s1

...
∂J (Sm)

∂sn





(II.14)
This system includes m + mn equations based on m
sample points. In comparison with an approach with-
out derivative information, the minimal required number
of sample points drops by a factor of 1

1+n
. An addi-

tional advantage of the extended collocation system is
its sparse structure (see Figure II.1), allowing fast linear
algebra operations, and having a relatively lower chance
of accidental rank deficiency. It turns out, as explained
and demonstrated in Section IV, that finding all first-
order partial derivatives for a sample point is computa-
tionally more expensive only by a small factor compared
to adding another point.

C. Connection with Multivariate Hermite

Interpolation

The solution of the problem (II.14) is closely related
to the Hermite interpolation problem [21]. Given the
coordinate maximum degrees n1, n2, . . . , nN , and the ho-
mogeneous maximum degree nT , we define the following
set of polynomials:

ΠN,nT
n1,n2,...,nN

=




Ψ(S) =

P

βi≤nT∑

0≤βi≤ni

aβ1,β2,...,βN
ΠN

k=1s
βi

i






We call ΠN,nT
n1,n2,...,nN

the set of polynomials of N variables
of total degree no more than nT and of coordinate degrees
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no more than n1, n2, . . . , nN .
The collocation problem becomes the following. Given

the points S1, S2, . . . , Sm, determine a polynomial Ψ(S)
such that

Ψ(Si) = J (Si);
∂Ψ

∂sj

(Si) =
∂J

∂sj

(Si)
i = 1, 2, . . . , m
j = 1, 2, . . . , N.

(II.15)
This Hermite interpolation problem can have a unique
solution in the general case only when the number of
monomials in ΠN,nT

n1,n2,...,nN
equals m(N + 1), the number

of interpolation conditions, generally a rare occurrence.
Partial first-derivative information can be included or
dropped to make the system square. Even in that case,
however, the issue of existence and uniqueness of a poly-
nomial satisfying those conditions is not settled. All the
results we are aware of concerning existence and unique-
ness for almost all choices of the collocation set {Si} in
the multidimensional case involve either maximum coor-
dinated degree or maximum total degree, but not both
[21].

We use both total degree and coordinate degree limita-
tions to prune the number of polynomials needed to gen-
erate our approximation, which would otherwise rapidly
grow with increasing N . If the resulting system is under-
determined, we have the option of adding additional col-
location points (though this does not guarantee its well-
posedness). If the system is overdetermined, we can solve
it in a least squares sense. To account for either type of
ill-posedness, we solve the system (II.15) using a general-
ized pseudoinverse approach based on singular value de-
composition [3]. The generalized pseudoinverse uses sin-
gular value decomposition where exceedingly small sin-
gular values are replaced with +∞ before carrying out
the inversion.

The choice of sampling points and coordinate degrees
in our method has a major heuristic component in the
absence of theory for Hermite interpolation of the type
considered here. Nonetheless, as we show in Section IV,
the approach can be effective in situations where direct
Monte Carlo sampling [20] would require orders of mag-
nitude more effort.

D. The Use of a Control Variate for Variance

Reduction

While the polynomial approximation Ĵ can have ex-
cellent accuracy, as we show in Section IV, it introduces
a bias. To correct for that bias, we use a control vari-
ate approach [20]. Recall that our setup is such that
the function evaluation involves a run with a computa-
tionally expensive software to determine the values of J
at the collocation nodes, but once the SFEM model is
computed, evaluations of it are cheap.

In that case, we assume that the object is to estimate
the average of a functional E[Φ(J )] of the merit function
J with respect to some probability density over the un-

certain parameter space. We use Ĵ as a control variate

using the following identity.

E [Φ(J )] = E
[
Φ(J ) − ρ

(
Φ(Ĵ ) − E

[
Φ
(
Ĵ
)])]

(II.16)
which is valid for any value of ρ. The functional Φ can be
a power function, a maximum operator, or the character-
istic function of an interval. In the last case, in nuclear
reactor applications this would result in the estimation of
the probability that a merit function will be in a certain
range (for example, leading to the widely used 95% prob-
ability margins, after some extra processing). Since eval-

uations involving Ĵ are inexpensive, the average quantity

E[Φ(Ĵ )] can be evaluated very inexpensively.
The optimal choice of ρ is the correlation coefficient be-

tween Φ(J ) and Φ(Ĵ ) [20]. This coefficient is not know
a priori, but can be inferred from data. If the approx-

imation Ĵ is of high quality, then ρ ≈ 1. We assume
that to be the case, and we use the right-hand side of the
identity

E [Φ(J )] = E
[
Φ(J ) −

(
Φ(Ĵ ) − E

[
Φ
(
Ĵ
)])]

(II.17)

to estimate E [Φ(J )]. Note, however, that the ran-
dom variable in the left has variance var (Φ(J )),
whereas the one on the left-hand side has the variance

Var
(
Φ(J ) − Φ(Ĵ )

)
, which is potentially much smaller

than var (Φ(J )), while introducing no additional bias.
Should that occur, we will be able to obtain a confidence
interval on E [Φ(J )] while using far fewer samples.

III. MODEL OF THE REACTOR CORE

For the convenience of description and numerical
experimentation, we use a steady-state model of the
reactor core, with uniform fuel elements, simple heat
transport model (including convection and diffusion),
and no control mechanisms. The idea is to preserve
the general behavior of the physical system and to
avoid the model-specific complexities of nuclear reactor
analysis. The models describing the homogenized heat
distribution in the core, and specific heat distribution
inside the fuel pin folllow the ones given in [7].

A. The Computational Model

A basic unit of the core is a cylindrical fuel pin, sur-
rounded by flowing coolant (of constant velocity pattern).
The chemical and physical properties of the coolant and
the pin are spatially homogeneous, dependent only on
temperature. There are two sources of heat: nuclear fis-
sion inside the fuel pin (generating thermal source q′′′),
and thermal energy carried by the incoming coolant (of
constant temperature T0). Heat is transported inside the
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FIG. III.1: Finite volumes model of the reactor core

pin (from the centerline to the surface, and along the cen-
terline) by conduction, in the coolant by convection and
diffusion. A complete reactor core includes a hexagonal
assembly of the fuel pins inside a large, insulated cylinder
filled with coolant. We introduce a finite-volume grid of
identical horizontal layers, as shown in Figure III.1. The
heat is exchanged through the coolant volume elements
and vertically inside the pins.

In this work we are concerned only with assessment
of the thermohydraulics of a sodium-cooled reactor [9].
Our goal is to evaluate the benefit of derivative-based un-
certainty assessment for realistic configurations involving
highly nonlinear and important state variables. In the
case of thermohydraulics, such a quantity is the maxi-
mum temperature in the fuel pin [7].

A code that computes the maximum fuel pin tempera-
ture coupled with heat transport in the channel and that
includes derivative information was not available to us.
We decided to develop a simple approximation technique
that captures the essential physical phenomena and pro-
vides the afferent derivative information. On the other
hand, direct calculation of the fuel pin temperature in-
volves a complex, multiphysics, three dimensional model.
Developing such models would result in an exceedingly
large development cost to evaluate a nonlinear uncer-
tainty quantification model. We therefore decided to im-
plement a hierarchical approximation procedure. First,
thermal flux balance equations are developed on a very
coarse mesh (one node per channel or per pin at multi-
ple height levels, as displayed in Figure III.1 ). Then, a
radially symmetric model of the temperature in the cen-
ter pin is developed, with boundary conditions generated
by the surface temperature computed by the coarse ther-
mal flux balance calculation. The latter model is solved
on a fine mesh, resulting in an accurate description of
the centerline temperature, where the maximum fuel pin
temperature can be found in our model.

1. Three-Dimensional Thermohydraulics Calculations

Our computational approach is based on a classical
finite volume method in which we compute distinct con-
vective and diffusive fluxes [9].

We assume a prescribed form of the nuclear heat
source:

q′′′(x, y, z) = Cs · sin(π
z

H
) (III.1)

where H is the length of the fuel pin. The parameter Cs

is chosen so that the temperature excursion of the reactor
is 770 degrees Kelvin at the input, and 970 degrees Kelvin
at the output. Here and in sequel we use degrees Kelvin
(K) to measure the temperature.

Given a velocity field ~u, we write the main heat trans-
port equation as

0 = −∇ · K∇T − ρcp
−→u ∇T + q′′′ (III.2)

where K is the thermal conductivity, ρ is the density and
cp is the heat capacity of the medium (fuel or coolant,
depending on the location).

Integrate (III.2) over a volume cell Ω and apply the
divergence theorem:

0 =

∫

∂Ω

K∇T · −→n dS +

∫

∂Ω

ρcpT~u · ~ndS −

∫

Ω

q′′′dV

(III.3)
Note that the explicit expressions for the outward normal
vector −→n , variables of integration dS, dV , depend on the
shape of the cell.

In the finite-volume formulation, equation (III.3) can
be written as a conservation law for thermal energy flux
Φ over all interfaces ∂Ω between the neighboring volume
cells:

0 =
∑

∂Ω

Φ −

∫

Ω

q′′′dV (III.4)

The flux conservation law (III.4) is discretized on a
coarse mesh with one node per pin and one node per
channel at a given height level, as displayed in Figure
III.1, for multiple height levels. The details of the cal-
culations can be found in Appendix A. This approach
results in a system of linear equations with matrix Λth:

Λth(cp, Kc, Kf , h)T = Bth (III.5)

Here we denote by the subscript c quantities associated
with the coolant and by subscript f quantities associated
with the fuel pin. Hence, we denote by Kc the thermal
conductivity of the coolant and by Kf the thermal con-
ductivity of the fuel pin. The convective heat transfer
coefficient h measures the rate of heat exchange from
the coolant to the surface of the pin. It is a unit-free
construct, related to other constructed variables such as
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Nusselt number Nu, dependent on the hydraulic charac-
teristics of the coolant flow, not discussed in detail here.
It is provided to us in the form

h = const · cp,c · Nu = const · cp,c · Nu(Kc, cp,c) (III.6)

In equation (III.5) we use cp to denote cp,c, the heat
capacity of the coolant, since cp,f does not enter it.

We impose in-flow conditions in the form T = T0 for
volume cells in the first horizontal layer, and ∇T = 0
everywhere else. At the outflow, this means that the
entire heat output is due to transport.

In addition, we enforce the mass conservation for the
coolant flow in the form

ρ~u = const (III.7)

The described setup produces physically reasonable dis-
tributions of temperature in the reactor channels.

The values of the material properties (ρ, cp, K, h) de-
pend on temperature. The assumption (III.7) excludes
ρ from the analysis. For the rest of the parameters,
R = (cp, K, h), we use the prescribed material proper-
ties obtained from experimental data.

cp = cp(T ) , K = K(T ) h = h(Nu) = h(Nu(T ))
(III.8)

At this point, the expressions are uncertainty-free.
The dependencies (III.5), (III.8) are coupled by a fixed-

point iteration procedure started from a temperature-
independent guess R0 and repeated until convergence
within numerical tolerance:

Tn := T (R̂n−1) , R̂n := R̂(Tn), |Tn − Tn−1| > ε
(III.9)

Note that the individual components of temperature
T and temperature-dependent parameters R(T ) are in-
dexed differently. Equations (III.5) provide one value of
temperature for each volume element.

The relationships (III.8) produce one value of thermo-
dynamical parameter for each interface between two vol-
ume elements and require an estimate of the temperature
on that interface:

R(T ) = R(I,J)(TI→J) = R(I,J)(
TI + TJ

2
) (III.10)

For technical convenience, for each thermodynamical pa-
rameter R, we store a sparse pattern matrix ΠR:

ΠR = (ΠIJ ) (III.11)

where a component ΠIJ = 1 if cells I, J are neighbors,
and the heat flux ΦI→J explicitly depends on R; ΠIJ = 0
otherwise.

2. Centerline Temperature Model

Any temperature-dependent characteristic of the reac-
tor core can be chosen as a merit function. For a demon-
stration of the capabilities of the method, we define J as

a function of a derived quantity Tcenter, the temperature
along the central axis of the reactor core (coincides with
the central axis of a fuel pin), since we expect it to display
substantial nonlinear variation in the uncertainty range.
In the following, we ignore the gap and the cladding, and
we assume that the entire fuel pin is made of uranium
oxide.

After the convergence of the fixed-point iteration
(III.9) is achieved, we find the distribution of temper-
ature inside the central pin by solving an additional
steady-state equation [7]

−∇ · K∇Tpin + q′′′ = 0 (III.12)

In cylindrical coordinates (θ, r, z), assuming radial sym-
metry, we have

1

r

∂rK
∂Tpin(r,z)

∂r

∂r
+

∂2KTpin(r, z)

∂z2
+ q′′′ = 0 (III.13)

with boundary conditions

∇Tpin(r, z) = 0 (III.14)

at r = 0, and

Tpin(r, z) = Tsurface (III.15)

at the surface of the pin, r = D/2, where Tsurface can
be estimated from the finite volume model as an aver-
age of the (homogenized) temperatures in the pin and in
the coolant (a more precise estimation involves the heat
transfer coefficient h).

We apply a two-dimensional discretization grid to
(III.13), coinciding with the one used for a finite-volume
model in the horizontal direction, more refined in the ra-
dial direction. The obtained system of linear equations
is similar to (III.5), with fewer parametric dependencies:

ΛpinTpin = Bpin(h, K) (III.16)

For each horizontal level, the value Kaverage can be

obtained as an average of the values K(I,J) over the
interfaces (I, J) between the fuel pin and the neigboring
coolant cells. This value of heat conductivity corre-
sponds to the average temperature in the volume element
I. To account for the much higher temperatures near
the centerline of the pin, we use a simplified estimate of
the form K = K(Tpin) ≈ 1

CK
· Kaverage. The parameter

CK is chosen by a homogenization procedure: the flux
average over a pin crossection matches the one with a
temperature dependent K for a reference temperature
distribution that approximates the one at the center of
the uncertainty region.

For the boundary conditions, Tsurface is obtained

from TI , TJ , h(I,J), as shown in (A.7). The information
on the distribution of temperature in the centerline of
the pin is extracted from the solution of (III.16):

Tcenter(z) = Tpin(r = 0, z) (III.17)
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and substituted into the expression for the output func-
tion

J = J (Tcenter) (III.18)

More details on discretizing and solving (III.2), (III.12)
can be found in the appendix. In the next section we
discuss the introduction of uncertainty into relationships
(III.9).

B. Uncertainty of the Physical Parameters

In the available literature on material properties [10,
11, 26] the dependencies of thermo-dynamical parameters
on temperature are estimated from the experimental data
and provided in the Laurent sum form

R =
∑

i

r(i)T i

(
1 +

∆R

R0

)
(III.19)

where we denote by ∆R
R0 the relative error uncertainty

term and by R0 =
∑
i

r(i)T i the reference value.

For material properties of the coolant (liquid sodium)
and fuel (uranium dioxide) we use the following expres-
sions [11],[10]:

The reference value of the heat capacity of the coolant:

c0
p ≈ 1.6582− 8.470 · 10−4T + 4.4541 · 10−7T 2

−2992.6T−2 [J/kg · K]
(III.20)

with relative uncertainty
∣∣∣∆cp

c0
p

∣∣∣ estimated as 0.1% at 300

K, 3% at 1000 K and 8% at 2000 K.
The reference value of the thermal conductivity of the

coolant:

K0
c ≈ 124.67− 0.11381T + 5.5226 · 10−5T 2

−1.1842 · 10−8T 3 [W/m · K]
(III.21)

with uncertainty
∣∣∣∆Kc

K0
c

∣∣∣ estimated as 5% at 700 K, 12%

at 1100 K and 15% at 1500 K.
The reference value of the thermal conductivity of the

fuel:

K0
f ≈ 12.57829− 2.311 · 10−2T + 2.366675 · 10−5T 2

−1.30812 · 10−8T 3 + 3.6373 · 10−12T 4

−3.90508 · 10−16T 5 [W/m · K]
(III.22)

with uncertainty
∣∣∣∆Kf

K0
f

∣∣∣ taken to be 10% for all temper-

atures below 2000 K.
A different type of uncertainty description is available

for the dimensionless heat transfer coefficient h [26]. We
describe it briefly and note that in practice its influence
on our outputs of the model is very small. It is available
indirectly, through the relationship between dimension-
less Nusselt and Peclet numbers, given in the form

Nu = const · (Pe)0.3 (III.23)

with a constant coefficient dependent on geometry of the
flow. The dependence of h on temperature is given by
the expressions

Pe =
ρdh~ucp,c

Kc

(III.24)

h = const · cp,c · Nu (III.25)

Specifically, we use the expression [26]

h(Pe) =
4

DH
(−16.15+24.96(P/D)−8.55(P/D)2)(Pe)0.3.

(III.26)
The uncertainty in the convective heat transfer param-
eter appears through the one in the Peclet number.
The reference expression for the Peclet number is, us-
ing (III.23), with the ρ~u computed with ~u = 5m/s and ρ
computed at 800K,

Pe0 = 10.1752
cp,c

Kc

. (III.27)

The other parameters used in the expression are dh =
0.01, the hydraulic diameter, in meters, D = 0.01, the
fuel pin, in meters, H = 3.70, the length of the fuel pin
in meters, and P/D = 1.1394. The uncertainty

∣∣∆Pe
Pe

∣∣ we
have estimated from the data plots in [26] to be 70-80%.

C. Constructing the Parametric Representation of

the Uncertainty

The multiplicative expression (III.19) contains no
structure for dependence ∆R(T ) of uncertainty on tem-
perature. The specific values of

∣∣∆R
R0 (T )

∣∣ are given only
for very few values of T . In addition, we have no uncer-
tainty structure about the correlations between the val-
ues of the uncertainty at various levels. We are left with
two choices. In a conservative approach, we could con-
sider worst-case uncertainty calculations, in which only
extreme values of the merit function J would be sought,
subject to the constraints that the uncertainty parame-
ters satisfy the bounds developed in Section III B. Such
problems are optimization problems that have been am-
ply studied [15] but nonetheless lead to very conservative
estimates.

We take a different point of view, in which we create
an uncertainty structure that is perhaps imperfect but
is consistent with the information available to us. We
expect that future activity in the characterization of the
uncertainty structure for advanced burner reactors will
provide the information that is missing here. Once pro-
vided, this uncertainty structure can be accommodated
by the computational framework we have developed in
Section II.

In addition, the worst-case approach ignores the fact
that every realization of the dependence of the physical
parameters in Section III B, from the available literature
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[10, 11, 26], is smooth with respect to its independent
parameter (T for all parameters except h, for which the
independent parameter is Pe). We use this observation
to develop an approximate polynomial uncertainty struc-
ture. We choose a well-conditioned set of basis functions
{C(T )} and expand the multiplicative error :

R =

(∑
i

r(i)T i

)(
1 +

∑
j=0 αjCj(T )

)

h =

(∑
i

r(i)T i

)(
1 +

∑
j=0 αjCj(Pe(T ))

) (III.28)

For a numerically stable process, and unit-free error we
chose the multiplicative model (III.28). To expand the
dependencies on temperature, we use a set of Chebyshev
polynomials

C0(T ) = 1
C1(T ) = T + 1
C2(T ) = 2T 2 − 1
C3(T ) = 4T 3 − 3T 2

...

(III.29)

We choose to stop the expansions at the second-order
term α2C2 in all parameters, since every instance of ex-
perimental data is monotonous in temperature, without
noticeable oscillations.

The list of collocation parameters now reads:

S = {(α0, α1, α2)cp,c
, (α0, α1, α2)Kc

,
(α0, α1, α2)Kf

, (α0, α1, α2)h}
(III.30)

We acknowledge that specific statistical information on
the distribution of parameters (III.30) is missing. We as-
sume uniform distribution and no correlations between
the parameter triplets. To describe the possible of values
for (α0, α1, α2) for each material property, we perform
large-scale random sampling inside a sufficienty large cu-
bic region

αi,min ≤ αi ≤ αi,max, i = 1, 2, 3 (III.31)

around (0, 0, 0). For each point of the random sample,
we check the uncertainty conditions in the form

−ξ ≤ α0C0(Tξ) + α1C1(Tξ) + α2C2(Tξ) ≤ ξ (III.32)

for a small set of values of Tξ in the region of interest:
600 K ≤ Tξ ≤ 2600 K. If that condition is not satisfied,
the triplet (α0, α1, α2) is removed from the valid param-
eters list. The value ξ is obtained from the multiplicative
uncertainty structure described in (III.19) and from the
expressions of ∆R

R0 and R0 described in Section III B. For
values Tξ that are not among the ones enumerated in Sec-
tion III B, and for which uncertainty information is not
available to us, we take ξ corresponding to the values of
∆R
R0 from the adjacent points for which this information
is provided. This results in a slighly larger uncertainty
set. The approach results in an empirical distribution
for the parameters S, which is uniform on the set that is
feasible for the uncertainty constraints.
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−0.01

−0.005
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0.005

0.01
−0.01
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0

0.005

0.01

Validity region: c
p,coolant

FIG. III.2: Validity region for (α0, α1, α2)cp,c

We store the cloud of points satisfying (III.32) (see
III.2). We use a randomly (and uniformly) selected sub-
set from this validity region to create the collocation ma-
trix and construct the collocation model as described in
(II.14). Oversampling helped to achieve a wider spread
of sample points and improve the condition number of
the collocation matrix.

We also used Hammersley and Smolyak sparse sam-
pling [22] during the described two-step sampling pro-
cedure. We found that it results in an approximately
equivalent performance of the resulting surrogate model.

The main critique of the approach is perhaps that we
have no information to assume that the uniform distri-
bution, compatible with the uncertainty constraints. On
the other hand, in the absence of any additional infor-
mation, uniform prior distribution is among the most
reasonable (“non informative”) assumptions [18]. In ad-
dition, the extreme values of the merit function J ap-
proach those of the worst-case asessment for increasing
sample size. Therefore the information we provide would
be useful in that case as well.

In addition, our approach creates an uncertainty struc-
ture that is fully consistent with the prior information.
Our main goal is to investigate the scope of SFEM based
uncertainty quantification approaches for realistic uncer-
tainty structures for sodium-based reactor calculations.
Therefore the performance of the SFEM approach for dif-
ferent uncertainty structure that is also compatible with
the prior information is likely to be comparable to the
one we will observe in our numerical experiments.

D. Computing Derivative Information

There are a number of possible approaches to comput-
ing derivative information (directly or through the use of
the adjoint variable) [14, 17, 24]. The factors taken into
account when choosing the approach are computational
efficiency, and the ease at which the procedure can be
adapted for a class of examples.

We use a simple chain rule approach, with elements



10 O. Roderick et al.

of automatic differentiation. To keep the description of
the procedure general, we first suppose that the output
function J (T ) is not hierarchical (i.e., there is an explicit

dependence of J on T ). We therefore consider R̂ related
by a quasilinear system with a constant source term B

F (Tn, R̂(Tn−1)) = Λ(R̂) · Tn − B = 0
Tn ≈ Tn−1 = T

(III.33)

and a set of expressions dependent on the collocation
parameters α:

R(T, α) = R(T ) · (1+α1C1(T )+α2C2(T )+ ...) (III.34)

as specified by (III.26) – (III.32) and (III.28).
Taking into account the implicit dependencies present

in (III.33), (III.34), we obtain the derivative of J by the
following sequence of operations:

By chain rule,

dJ

dα
=

∂J

∂Tn

·
dTn

dα
(III.35)

Consider (III.33) in the form

F (Tn(α), R̂(Tn, α)) = 0 (III.36)

Note that we formally treat the two instances of Tn in
(III.36) as separate variables. Differentiate (III.36) with
respect to α:
(

∂F

∂Tn

+
∂F

∂R̂
·

∂R̂

∂Tn

)
·
dTn

dα
+

∂F

∂R̂
·
∂R̂

∂α
= 0 (III.37)

Two partial derivatives are required for this expression:

∂F

∂Tn

= Λ (III.38)

∂F

∂R̂
=

∂Λ

∂R̂
· Tn (III.39)

From (III.37) we have

dTn

dα
= −

(
∂F

∂Tn

+
∂F

∂R̂
·

∂R̂

∂Tn

)−1

·
∂F

∂R̂
·
∂R̂

∂α
(III.40)

Finally, the derivative is expressed as

dJ

dα
= −

∂J

∂T
·

(
Λ +

∂Λ

∂R̂
· Tn ·

∂R̂

∂Tn

)−1

·
∂Λ

∂R̂
·Tn ·

∂R̂

∂α
|Tn=T

(III.41)
This generic approach is applied to the model de-

scribed in III A in the following fashion, using the struc-
tural equations (III.5) and (III.16), where

Λ =

[
Λth 0
Λc Λpin

]
B =

[
Bth

Bpin

]
, Tn =

[
T

Tpin

]
,

We have introduced the linear operator Λc to quantify
the effect of the boundary conditions on the pin problem
in Section III A 2, which is linear.

Details about how the derivative information is ob-
tained, including the hierarchical case, are given in Ap-
pendix B.

IV. NUMERICAL RESULTS

In our numerical tests we use a model of the reactor
core with 7 pins and 20 horizontal layers. The output
function is a measure of temperature on the centerline of
the central pin:

J (T ) = ‖Tcenter‖p (IV.1)

with p = 1000, resulting in a differentiable expression
estimating the maximal temperature in the reactor core.
We compared the performance of different approaches
to uncertainty quantification: random sampling, linear
approximation, SFEM with full basis and SFEM with
truncated basis.

A. General Algorithm

The algorithm used to create the models is described
below. Note the variations required for the use of deriva-

tive information and basis truncation.

• Create Valid Sample Points Sets

1. Choose a list of parameters S =
(s1, s2, s3, . . .) = ((α1, α2, α3), . . .), as in
(III.30).

2. Generate a set of admissible values of S ac-
cording to conditions on maximal uncertainty:
(III.31), (III.32).

• Initialize and Run the Physics Model

1. For each value Si, evaluate J(Si) by running a
fixed point iteration (III.9): (III.5) to solve a
finite-volume model with given material prop-
erties; (III.28) to update the values of ma-
terial properties according to given tempera-
ture. Twenty iterations are sufficient for con-
vergence.

2. Derivative information: at the last step of the
fixed point iteration, store the required inter-
mediate components and evaluate the partial

derivatives
∂J

∂si

by the method described in

Section B.

• Create SFEM Polynomial Basis

1. Evaluate parametric sensitivity: define a neu-
tral state of the system with no uncertainty:
S = (0, 0, 0, . . .); J0 = J (S0). Evaluate the

derivatives
∂J0

∂si

.

2. Basis truncation: using the derivative mag-
nitude test (II.13), at S = S0, rank compo-
nents of S by importance. Choose importance
groups I, II, III. We take nIII = nII = 2,
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nI = 8. The construction of the corresponding
truncated SFEM model requires 12 full runs
of the model.

3. Assemble complete basis Ψ (II.5), of multivari-
ate polynomials in variables S. We choose the
maximal degree to be 3.

4. Basis construction: use importance groups
I, II, III.
Remove basis polynomials of degree 3 that do
not include variables from group I.
Remove basis polynomials of degree 2 that do
not include variables from group II.
Use the remaining set of polynomials as a new
basis Ψ.

• SFEM Collocation Model Creation and Val-

idation

1. Create collocation equations (II.6) for the cho-
sen sample points and chosen polynomial ba-
sis. Derivative information: use a collocation
matrix with derivative information (II.14).
The minimal number of collocation matrix
rows is equal to the size of the basis Ψ. We
use a tall matrix (oversample by a factor of 2).

2. Solve collocation equations to obtain the poly-
nomial surrogate model Ĵ = Ĵ (S) (II.1).

3. Additional analysis : use derivative informa-
tion from Section 3.2 to create a linear appox-
imation Ĵlinear = J0 +

∑
i

∂J
∂si

si.

4. Validation Create a new valid sample set Ŝi,
i = 1, 2, . . . , NV by a procedure similar to
Create Valid Sample Point Set step, and
evaluate the error of the SFEM and the linear
model. Alternatively, use the control variate
approach described in Section II D.

We note that the validation procedure is essentially
equivalent to the control variate procedure for comput-
ing the expected value of J at the number of samples
NV . Indeed, the root mean square error of the model
error, evaluated on the validation sample, is the sample
variance of the control variate. When the control vari-
ate is used by itself, it is not generally used with a fixed
sample; rather, the number of samples is increased until
a certain confidence range is met. To emulate this be-
havior, we assume a σ√

n
behavior of the error estimate,

using the estimated sample standard deviation σ at NV .
These results are plotted in Figure IV.2.

B. Performance of the Model

Our model has 12 uncertain parameters, 3 per physical
variable: cp,c, Kf , Kc, and h.

On a validating set of NV = 40 points, we observe
range (lowest and highest observed outputs), variance

(variance of the observed outputs) and error variance
(variance of the difference between the surrogate and the
exact outputs).

We used the procedures described in Section IVA to
create two versions of SFEM surrogate model. The first
version rigurously follows the procedure described in Sec-
tion IVA; we call it the version with basis truncation.
The second version skips the Basis Truncation step in
the Create SFEM Polynomial Basis stage of the al-
gorithm presented in the Section IV A; we call it the ver-
sion with full basis. We will use the comparison between
these two versions as a way to assess the benefit of our
basis truncation method.

We present the summary of our numerical findings in
Table IV.1. The absolute error produced, on the NV =
40 validation samples by linear approximation, SFEM,
and truncated SFEM approaches is shown in Figure IV.1.

To evaluate the relative benefit of the approaches dis-
cussed here and the ones closely related to them, we
evaluate their potential benefit versus computational cost
when used as a control variate. The methods compared
are SFEM with truncated basis, SFEM with full basis,
the linear model evaluated at the center of the uncer-
tainty area, and SFEM with truncated basis evaluated
without a derivative information. The last two models
are included for discussion because they are the ones the
most commonly used in nonintrusive uncertainty quan-
tification calculations.

The benefit measure used in our experiment is the the-
oretical variance of a Monte Carlo approach applied to
the control variate (II.17), based on the error estimate
produced by the validation, as described at the end of
Section IVA. The cost measure we have used is the num-
ber of model function evaluations to reach that variance
level. In evaluating the cost measure, we assume that one
evaluation of the full gradient J has, as our implementa-
tion has, twice the cost of a new evaluation of J at a new
point. Therefore, one model and gradient calculation has
the computational cost of three separate model evalua-
tions, that is, three units on the x axis of Figure IV.2.
The results are displayed in Figure IV.2. In that figure,
not all methods can be used below a certain threshold of
number of samples used, so they produce no result for
that x value.

Insofar the likelihood of the validity of generalizing our
findings in Subsection IVC a key assumption, also used
in the generation of Figure IV.2, is that the calculation
of the gradient of an output functional has a computa-
tion cost that is at most a small multiple of the cost of
the functional itself at a new uncertainty scenario point.
That assumption is, of course, arguable. The ratio of the
CPU time taken by the gradient calculation to the one of
the CPU time taken by the function evaluation is depen-
dent on the algorithms used for computing either, on the
hardware used, and on the size of the problem. We posit
that our assumption is reasonable based on the following
evidence:

• One full run for a 7-pin model takes 1-2 minutes of
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computational time (higher estimate corresponds
to an average desktop computer). The calculation
of the full gradient of J by the derivative calcula-
tion procedure described in Appendix B takes be-
tween 150% and 200% of the time of the function
evaluation procedure described in Appendix A.

• When other implementations and more parame-
ters are considered, adjoint method approaches are
known to provide derivative information at a cost
that is essentially at most the one of solving the
full nonlinear model [5]. This comes from the fact
that one adjoint variable calculation solves a lin-
ear system, whereas the full nonlinear model needs
multiple similar linear solves while it iterates to a
solution.

• For an arbitrary function, the gradient of the func-
tion is surely computable in a time that is a small
multiple of the time cost of the function evaluation;
that multiple never exceeds 5 [14]. We use a cost
ratio of 2 but we point out that even if we use 5,
in the limit of increasing number of parameters our
method is bound to overtake methods that do not
use derivative information.

C. Discussion of the Numerical Results

The numerical results are presented in Table IV.1, in
Figure IV.1, and in Figure IV.2.

We see from Figure IV.1 that the 12-parameter SFEM
full model and SFEM truncated basis model consistently
approximate the merit function better than does the lin-
ear model. This is reinforced by the data in Table IV.1,
which shows that we estimate the range of the merit func-
tion J and the error variance far better with the SFEM
methods than with the linear model. One should bear in
mind that we use the same code to construct the linear
model as we use to compute the derivatives used in the
SFEM model. Also, the fact that the tangent approxi-
mation underestimates everywhere the output functional
always occurs for convex functionals J [16]. We cannot
prove the convexity of our J choice (IV.1), but we wish to
point out that the linear model behavior from Figure IV.1
is definitely possible. Of course, it is likely that changing
the centerpoint of the linear approximation would result
in better error behavior for the linear model. But there
is no inexpensive guideline on how to do that. In addi-
tion, we use the same derivative information to rank our
variables and generate the truncated polynomial basis,
so the comparison is done under comparable conditions.

Insofar as our truncation mechanism is used to re-
duce the number of function evaluation needed to fit the
model, we see that the SFEM truncated model is better
than the linear model, both in terms of approximation er-
ror as seen in Table IV.1 and in terms of error per amount
of effort, as seen in Figure IV.2. Therefore, the trunca-
tion captures a substantial portion of the nonlinearity,
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without needing the complexity of the SFEM full model.
As the available computational resources increase, the
SFEM full model eventually outperforms both the SFEM
truncated and the SFEM full no-derivative-used model.

Finally, insofar as the use of derivative information,
examination of the control variate results, Figure IV.2 is
revealing. It shows that SFEM methods that use deriva-
tives need far fewer samples to reach a certain control
variate theoretical sample variance level when compared
to direct Monte Carlo, linear approximation, or SFEM
approaches that use collocation only.

We also point out that, for complex multiphysics mod-
els, the region of interest is precisely the region of up to
100 total samples (total model evaluations). For expen-
sive models, it is unlikely that we will be allowed a large
budget of model evaluations, so the asymptotic regime
is truly not interesting for practical applications. In the
below-100-samples region, the SFEM approach that uses
truncation and that is calibrated with derivative infor-
mation does particularly well.

Finally, an interesting conclusion can be reached by
comparing the performance of each method when pre-
dicting the range of the output functional relative to the
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TABLE IV.1: Performance of the 12-parameter SFEM model,
uncertainty in Cp,coolant, Kfuel, Kcoolant, h

Sampling Linear SFEM SFEM

Model Full Truncated

Sample size 40 1 72 12

Range 2237.82 - 2227.43 - 2237.82 - 2237.51 -

2460.54 2450.09 2460.55 2459.63

Model σ2 3487.08 3495.38 3486.87 3476.01

Model σ 59.05 59.12 59.05 58.96

Error σ2 * 8.94 0.00015 0.084

Error σ * 2.99 0.01 0.29

total variation of the output functional that is due to
parametric uncertainty. As can be seen in Table IV.1
the range size is about 223 K. From Table IV.1 we see
that, when predicting the range, the first-order sensitiv-
ity method errs by about 4.5%, the SFEM truncated by
0.5% and the SFEM full by essentially 0%. We see that,
if the goal is to predict correctly the range to within 10 %
error, the linear model based on first-order sensitivity cal-
culation is adequate. If this error level were not sufficient,
and the goal is is to predict the range to within 1% er-
ror, then only the SFEM approaches are adequate. Since
the main development cost of any of these approaches is
the computation of derivative information for the mul-
tiphysics model, our method achieves the extra preci-
sion level with virtually no additional development cost
(though it may need about 10 times more computational
cost). Another option would be to use a higher-order sen-
sitivity approach [5]. In our experience, such an approach
has a far higher development cost than the first-order
sensitivity approach. In addition, it needs a much larger
increase in computational cost compared to the increase
required by adding derivative information to a functional
evaluation [14]. We thus conclude that “sampling-with-
derivatives” SFEM approaches of the type presented here
are convenient approaches to extend the capabilities of
multiphysics codes which provide first-order derivative
information of an output functional. We point out that,
in the example discussed here, such a conclusion is largely
unaffected by the assumptions concerning the probability
distribution of the uncertainty. We also point out that,
as the number of parameters increases and as additional
physics details are included, we expect the percentages
above to change, and many times, in the favor of SFEM
approaches of the type presented here.

V. CONCUSION AND RESEARCH PLANS

In our work, we found that effects of a moderate num-
ber of uncertain parameters on a complex system can be
efficiently modeled through a synthetic method, combin-
ing stochastic finite-element interpolation with the use
of derivative information and basis truncation. We have

applied this method for a model of the thermohydraulics
of a nuclear reactor, where the uncertainty originates in
the physical parameters of the system. From the avail-
able information we have created a probabilistic model,
consistent with the experimental information available to
us.

We observed the substantial advantage of SFEM meth-
ods computed using derivative information over classi-
cal methods of uncertainty quantification: pure random
sampling, linear approximation, and SFEM methods that
do not use derivative information. In addition, we ob-
served that our basis truncation heuristic efficiently pro-
duces a far better approximation of the output function
than the linear model while using far less computational
resources than the full SFEM model.

Naturally, further research is needed to determine
whether the trends observed in this work hold for
other applications and for larger instances of uncertainty
asesssment in nuclear reactors. But we have shown
that SFEM approaches using derivative information have
great potential for real applications.

From the engineering point of view, application of the
method to models with greater range of possible un-
certainty and with more parameters is of interest. We
plan to extend the model of the nuclear reactor core,
with additional uncertainty coming from the description
of neutron interaction (an eigenvalue problem), nonuni-
form flow of the coolant (Navier-Stokes equations), and
structural deformations of the reactor elements. Addi-
tional parts of the model will be coupled with each other
through temperature. We expect the most notable (and
highly unstructured) contribution of uncertainty to come
from the equations for nuclear fission.

Another important engineering issue needing further
consideration is the one of creating appropriate uncer-
tainty models from available data about the physical
properties of the reactor. At the moment, we used in-
formation from the best available processed assessments
for nuclear reactors [10, 11, 26]. But these assessments
provide uncertainty information in a way that, while very
valuable, is not optimally usable in a probabilistic ap-
proach. We have reduced the representation of the un-
certainty by observing that all observed measurement re-
alizations are smooth, and we have introduced a proba-
bilistic structure based on a uniform prior. Since the
real distribution of the data is likely to be more peaked,
the estimates we produce should be worse (they should
show larger ranges of the centerline temperature) than
the calculation with the actual distribution. We expect
that direct processsing of the experimental data, which is
a nontrivial endeavor, will show that our spectral repre-
sentation of the uncertainty approach is reasonable and
that the uniform prior is indeed a conservative approach,
though not as conservative as worst-case approaches.

From a mathematical point of view, this research poses
several interesting questions. The first is what is an ap-
propriate basis truncation procedure. A simple heuristic
for basis truncation, based on first-order sensitivity anal-
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ysis, produced reasonable performance of SFEM model.
We would like to find a more sophisticated procedure
from basis selection, allowing us to keep the basis small
without significant loss of quality, and simultaneously ex-
tend interpolation order in some variables to high degrees
(5 or more). The list of stochastic variables should not
necessarily be kept intact: there is a possibility of apply-
ing factor lumping and other model reduction techniques
to construct optimal combinations of variables and rank
them by importance.

The second important question is how to select the
sample points for collocation with derivative information.
This problem was adressed in the past for the case of
full SFEM basis of a given degree involving collocation
without derivative information [27]. To our knowledge,
no result exists for the case described here, the one us-
ing a truncated basis and derivative information. We
used a simple procedure to select sample points for col-
location where we compensated for the possibly unfa-
vorable condition number and other quality issues with
oversampling. This was sufficient for our test case, but
we forsee problems for models with more uncertain pa-
rameters (“curse of dimensionality”: random sampling
may miss important locations) or with more oscillatory
behavior of the model (surrogate model may behave in-
correctly at points of high sensitivity). In the selection of
sample points, there is a greater variety of choices, while
the selection criteria is mostly unclear. We expect opti-
mal sampling to be more difficult than optimal selection
of basis.

Moreover, we hope to provide additional theoretical
justification for the suggested uncertainty quantification
techniques. If possible, we would like to derive error es-
timates for the performance of the reduced model, de-
pending on the choice of the polynomial basis and on the
number of sample points used to calibrate the model.
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Appendix A: Details of Finite-Volume Reactor Core

Modeling

For the interface ∂ΩL between the cells ΩI , ΩJ , denote

the temperature gradient by ∇T (L) = ∇T
(L)
I→J ; the cor-

responding flux by Φ(L) = Φ
(L)
I→J = −Φ

(L)
J→I . We use a

simple scheme for estimating the gradient:

∇TI→J =
TJ − TI

Dx

(A.1)

where Dx is the distance between the volume element
center. We estimate the temperature on an interface as

TI→J = TJ→I =
TJ + TI

2
(A.2)

where TI , TJ are temperatures in the center of the corre-
sponding cells.

Let the temperature on the interface between the cells
be TIJ and the distance between the centers of the cells

be H
(L)
I = HI→J . Denoting the coordinates of the geo-

metric center of cell I as (xI , yI , zI), we express outward
unit normal as

n = ~nI→J =
1

Dx

· (xJ − xI , yJ − yI , zJ − zI) (A.3)

The finite-volume model (III.4) can now be assembled
from the information about the heat fluxes across every
type of boundary.

Pin to pin, diffusion:

Φ =

∫

∂Ω

Kf∇T · ~ndS (A.4)

Coolant to coolant, diffusion and convection:

Φ =

∫

∂Ω

Kc∇T · ~ndS +

∫

∂Ω

ρcp,cT~u · ~ndS (A.5)

Coolant to outflow, convection only:

Φ =

∫

∂Ω

ρcp,cT~u · ~ndS (A.6)

The flux from pin to coolant can be derived from two
descriptions of temperature exchange:

Φ = h(TJ − Tsurface) = Kf

Tsurface − TI

D/2
. (A.7)

where D is the diameter of the pin, the rightmost ex-
pression is a diffusive heat flux from the centerline of the
pin to the surface, and h is the convecitve heat transfer
coefficient measuring the rate of heat exchange from the
coolant to the surface of the pin. Exclude the unknown
Tsurface:

Φ = 2
hKf(TJ − TI)

hD + 2Kf

(A.8)

We now write the detailed flux conservation equations
at each of the cells created by our discretization. The
flux equations include integrals over cell boundaries. We
denote such integration boundaries as ∂Ω, and the in-
tegration is taken over the one between the cell I and
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the cell whose other index is mentioned in the expres-
sion. Also note that each temperature appearing in the
following expression is considered a constant for that in-
tegration.

Every pin cell I has coolant cell neighbors (record their
index as J) and pin neighbors directly above and below
(recorded as I+, I−). It contributes the following:

∫

Ω

q′′′dV =
∑
J

2 hK
hD+2K

TJ −
∑
J

2 hK
hD+2K

TI

+
∑

I−,I+

K 1
HI→I−.+

∫

∂Ω

ndSTI−,+

−
∑

I−,I+

K 1
HI→I−.+

∫

∂Ω

ndSTI .

(A.9)

Every coolant element I has coolant cell neighbors in
the same horizontal layer (record their index as J), cell
neighbors directly above and below (recorded as J+,J−),
and pin neighbors in the same hortizontal layer (recorded
as J∗). It contributes the following:

0 =
∑
J

K 1
HI→J

∫

∂Ω

ndSTJ +
∑

J+,J−
K 1

HI→J

∫

∂Ω

ndSTJ+,J− −
∑
J

K 1
HI→J

∫

∂Ω

ndSTI + ...

−
∑

J+,J−
K 1

HI→J

∫

∂Ω

ndSTI + 1
2

∑
J

ρcp

∫

∂Ω

~undSTJ + 1
2

∑
J+,J−

ρcp

∫

∂Ω

~undSTJ+,J− + ...

+ 1
2

∑
J

ρcp

∫

∂Ω

~undSTI + 1
2

∑
J+,J−

ρcp

∫

∂Ω

~undSTI +
∑
J∗

2 hK
hD+2K

TJ∗ −
∑
J∗

2 hK
hD+2K

TI

(A.10)

Equation (III.12) for the temperature in the interior of
the central pin is written directly in terms of temperature
Tpin rather than in terms of fluxes. We assume cylindri-
cal symmetry of the problem, and we write the equation
in cylindrical coordinates. The primary variable is dis-
cretized on a R × Z grid and thus becomes T n,m

pin , for
m = 1, 2, . . . , R, and n = 1, 2, . . . , Z.

Then the discretized heat equation in the pin reads as
follows:

Kn

(m + 1)T
(m+1,n)
pin − 2mT

(m,n)
pin + (m − 1)T

(m−1,n)
pin

m∆r2
+ ...

Kn+1T
(m,n+1)
pin − 2KnT

(m,n)
pin + Kn−1T

(m,n−1)
pin

∆z2
= q′′′n

(A.11)

with m = 2..R − 1 , n = 2..Z − 1 , ∆r =
D

2R
, ∆z =

H

Z
, Kn = K(z = n∆z) , q′′′n = q′′′(z = n∆z).

The system is augmented with boundary conditions.

At m=1,
∂Tpin

∂r
= 0, and the equation (A.11) reads as

Kn+1T
(1,n+1)
pin − 2KnT

(1,n)
pin + Kn−1T

(1,n−1)
pin

∆z2
= q′′′n

(A.12)
At n = 1, Z

T
(n,R)
pin = Tsurface (A.13)

with the surface temperature estimate Tsurface computed
from (A.7) with value hn = h(z = n∆z) and averaged
over the neighbors of the fuel pin at the same height.

Appendix B: Details of Derivative Calculations

The temperature is stored in a vector T with n
components, corresponding to the number of volume
cells in the model. Each material property R is stored
in a n × n matrix, with nonzero entries indicated by
an indexing system (III.11). The components of sparse
array operations (III.40),(III.41) are generated as follows:

A sparse matrix

∂F

∂R
=

∂Λ

∂R
· T =

∂Λ

∂Φ
·
∂Φ

∂R
· T (B.1)

has n2 columns. The column ”IJ”, I = 1 . . . n, J =
1 . . . n has nonzero entries only if ΠIJ = 1. It is assembled
as

∂F

∂R

I,J

= (
∂Λ

∂Φ
)(I,J) ·

∂Φ

∂R

(I,J)

· T (B.2)

Since heat flux Φ(IJ) is influencing only its origin cell
I and destination cell J , the matrix (∂Λ

∂Φ)(I,J) has two
nonzero entries: −1 in position (I, J) and +1 in posi-
tion (I, I). The expression ∂Φ

∂R
(IJ) is a scalar, explicit

derivative of one of the formulas (A.4) – (A.6), (A.8),
depending on the type of interface I → J .

The entry (I, J) of the n×n matrix ∂R
∂α

is nonzero only
if ΠIJ = 1. It is computed as the derivative of (III.28):

∂R

∂αi

(I, J) =

(
∑

i

r(i)T i

)
· Ci(T ) (B.3)

evaluated at R(I,J), T (I,J).
The n × n matrix ∂R

∂T
has two nonzero entries in each

column, in positions I and J , both equal to the derivative
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of (III.28) with respect to T :

∂R
∂TI

= 1
2

(∑
i

ir(i)T i−1

)
· (1 + α0C0(T ) + α1C1(T ) + α2C2(T )) + ...)

+ 1
2

(∑
i

r(i)T i

)
· (α0C

′
0(T ) + α1C

′
1(T ) + α2C

′
2(T )) + ...)

(B.4)
evaluated at R(I,J), T (I,J), where C′

i is a derivative of
a Chebyshev polynomial (III.29); the coefficient 1

2 =
d

dTI
(TI+TJ

2 ) comes from (III.10).

The components ∂J (T )
∂T (I) are derivatives of the expres-

sion for J (T ) with respect to temperature.
Now let us consider the case (III.18) where the explicit

expression J (T ) is not available. When an output is
defined hierarchically, we can compute the derivative by
chain rule:

dJ (Tcenter)

dα
=

dJ

dTcenter

·
dTcenter

dT
·
dT

dα
(B.5)

where ∂J
∂Tcenter

is available explicitly and dT
dα

is available

from (III.40). To find dTcenter

dT
directly, we differentiate

the expression

F = ΛpinTpin − Bpin(K, h) = 0 (B.6)

with respect to T on both sides, noting the dependencies
of K and h on T . The expression simplifies to

dTpin

dT
= Λ−1

pin ·(
∂Λpin

∂T
−

∂Bpin

∂T
−

∂Bpin

∂K

∂K

∂T
−

∂Bpin

∂h

∂h

∂T
)

(B.7)
The components ∂K

∂T
, ∂h

∂T
are computed above.

The direct dependence of (III.16) appears only in the

initial conditions and influences only Bpin.
∂Λpin

∂T
= 0. In

an m × n cylindrical grid,
∂Bpin

∂T
is an mZ × nZ matrix

with entries of 1 in positions (I, J) where I corresponds
to the inflow, or the outflow horizontal layer; and J is an
index of the lowest or the highest volume element in the
central pin, 0 elsewhere.

An mZ×n2 matrix
∂Λpin

∂K
· ∂K

∂T
, has nonzero components

of the form 1
12 ·

∂Λ
(I)
pin

∂KI
· (∂K

∂T
)(J1,J2) in positions (I, J1),

(I, J2). The numerical coefficient comes from the fact
that K used in the calculation of the center line is an
average of six interface values K(J1,J2), each depending
on two temperature values TJ1 , TJ2. Similarly, an m×n2

matrix
∂Bpin

∂h
· ∂h
∂T

has nonzero entries 1
12 ·

∂B
(I)
pin

∂hI
·( ∂h

∂T
)(J1,J2)

in positions (I, J1), (I, J2).

The derivative of the centerline distribution ∂Tcenter

∂T
is

extracted from
∂Tpin

∂T
(r = 0) and used in the expression

dJ (Tcenter)
dα

= dJ
dTcenter

·
(

dTcenter

dT
· dT

dα
+ ∂Tcenter

∂K
· dK

dα

+∂Tcenter

∂h
· dh

dα

)

(B.8)

where ∂Tcenter

∂K
· dK

dα
= Λ−1

pin ·
∂Bpin

∂K
· dK

dα
, ∂Tcenter

∂h
· dh

dα
=

Λ−1
pin ·

∂Bpin

∂h
· dh

dα
. The components

∂Bpin

∂K
, dK

dα
,

∂Bpin

∂h
, dh

dα

are computed above.
The overall process of finding the derivative (III.41) is

reduced to loading precomputed components into sparse
arrays, finding an inverse of one matrix (two in the hi-
erarchical example), and performing some sparse array
multiplications.
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